SAMPLE QUESTION PAPER

MATHEMATIS

CLASS-XII(2014-15)

TYPOLOGY

	VSA(1 M)	LA-I (4 M)	LA-II (6 M)	100
Remembering	2,5	$11,15,19$	24	20
Understanding	1,4	8,12	23	16
Applications	6	$14,18,13$	21,26	25
HOTS	3	10,17	20,22	21
Evaluation \& MD	-	$7,9,16$	25	

Blueprint

Unit	VSA(1 mark)	SA(4 marks)	marks)	Total
1. Relations and Functions. Inverse Trigonometric Functions		1*	1^{*}	$\left.\begin{array}{l}6 \\ 4\end{array}\right\} 10$
2. Matrices Determinants	1	$2_{1}^{2 *}$		$\left.\begin{array}{l}8 \\ 5\end{array}\right\} 13$
3. Continuity and Differentiability Application Of Derivatives Integrals Application Of Integrals Differential Equations		$\begin{gathered} 3 \\ - \\ 3^{*} \end{gathered}$	$\begin{gathered} 1 \\ - \\ 1 \\ 1^{*} \end{gathered}$	$\left.\begin{array}{c} 12 \\ 6 \\ 12 \\ 6 \\ 8 \end{array}\right\} 44$
4. Vectors 3- Dimension Geometry	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ 1^{*} \end{gathered}$	$\overline{1}$	$\left.\begin{array}{c}6 \\ 11\end{array}\right\} 17$
5. Linear Programming Problems Probability	-	1^{*}	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\left.\begin{array}{c} 6 \\ 10 \end{array}\right\} 16$

Note: Questions with * mark will be asked with alternative VBQ means Value Based Question.

SAMPLE QUESTION PAPER ISSUED BY CBSE
 MATHEMATIS
 CLASS-XII(2014-15)

Section A

Question numbers 1 to 6 carry 1 mark each.

1. The position vectors of points A and B are \vec{a} and \vec{b} respectively. P divides $A B$ in the ratio $3: 1$ and Q is mid point of AP. Find the position vector of \underline{Q}.
2. Find the area of the parallelogram, whose diagonals are $\overrightarrow{d_{1}}=5 \hat{\imath}$ and $\overrightarrow{d_{2}}=2 \hat{\jmath}$
3. If $P(2,3,4)$ is the foot of perpendicular from origin to a plane, then write the vector equation of this plane.
4. If $\Delta=\left|\begin{array}{ccc}1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2\end{array}\right|$, write the cofactor of a_{32} (the element of $3^{\text {rd }}$ row and $2^{\text {nd }}$ column).
5. If m and n are the order and degree, respectively of the differential equation
$y\left(\frac{d y}{d x}\right)^{3}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-x y=\sin x$, then write the value of $m+n$.
6. Write the differential equation representing the curve $y^{2}=4 a x$, where a is an arbitrary constant.

Section B

Question numbers 7 to 19 carry 4 marks each.
7. To raise money for an orphanage, students of three schools A, B and C organized an exhibition in their locality, where they sold paper bags, scrap-books and pastel sheets made by them using recycled paper, at the rate of Rs. 20, Rs. 15 and Rs. 5 per unit respectively. School A sold 25 paper bag, 12 scrap-books and 34 pastel sheets. School B sold 22 paper bag 15 ,scrap-books and 28 pastel sheets while School C sold 26 paper bag, 18 scrap-books and 36 pastel sheets. Using matrices, find the total amount raised by each school.
By such exhibition, which values are inculcated in the students?
8. Let $A=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$ then show that $A^{2}-4 A+7 I=O$. Using this result calculate A^{3} also.

> Or

If $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1\end{array}\right]$, find A^{-1}, using elementary operations.
9. If x, y, z are in GP, then using properties of determinants, show that $\left|\begin{array}{ccc}p x+y & x & y \\ p y+z & y & z \\ 0 & p x+y & p y+z\end{array}\right|=0$, where $x \neq y \neq z$ and p is any real number.
10. Evaluate : $\int_{-1}^{1}|x \cos \pi x| d x$.
11. Evaluate : $\int \frac{1+\sin 2 x}{1+\cos 2 x} \cdot e^{2 x} d x$

Or

Evaluate : $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x$
12. Consider the experiment of tossing a coin. If the coin shows tail, toss it again but if it shows head, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 3' given that 'there is at least one head'.

Or

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
13. For three vectors \vec{a}, \vec{b} and \vec{c} if $\vec{a} X \vec{b}=\vec{c}$ and $\vec{a} X \vec{c}=\vec{b}$, then prove that \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, $|\vec{b}|=|\vec{a}|$ and $|\vec{a}|=1$.
14. Find the equation of the line through the point $(1,-1,1)$ and perpendicular to the lines joining the points $(4,3,2),(1,-1,0)$ and $(1,2,-1),(2,1,1)$.

Find the position vector of the foot of perpendicular drawn from the point $P(1,8,4)$ to the line joining $A(0,-1,3)$ and $B(5,4,4)$. Also find the length of this perpendicular.
15. Solve for $x: \sin ^{-1} 6 x+\sin ^{-1} 6 \sqrt{3} x=-\frac{\pi}{2}$

Or
Prove that: $2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}$
16. If $x=\sin t, y=\sin k t$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$.
17. If $y^{x}+x^{y}+x^{x}=a^{b}$, find $\frac{d y}{d x}$
18. It is given that for the function $f(x)=x^{3}+b x^{2}+a x+5$ on $[1,3]$, Rolle's theorem holds with $c=2+\frac{1}{\sqrt{3}}$. Find values of a and b.
19. Evaluate $\int \frac{3 x+1}{\sqrt{5-2 x-x^{2}}} d x$

Section C

-Page 3 of 5-

Question numbers 20 to 26 carry 6 marks each.
20. Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A X A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $a, b, c, d \in A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)].

Or

Let $\mathrm{f}: \mathrm{N} \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.
Show that f : $\mathrm{N} \rightarrow S$ is invertible, where S is the range of f . Hence find inverse of f .
21. Compute, using integration, the area bounded by the lines

$$
x+2 y=2, y-x=1 \text { and } 2 x+y=7
$$

22. Find the particular solution of the differential equation $x e^{\frac{y}{x}}-y \sin \left(\frac{y}{x}\right)+x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)=0$, given that $\mathrm{y}=0$, when $\mathrm{x}=1$.

Or

Obtain the differential equation of all the circles of radius r.
23. Show that the lines $\vec{r}=(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})+\lambda(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})$ and $\vec{r}=(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})+$ $\mu(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})$ are coplanar. Also, find the equation of the plane containing these lines.
24. 40% students of a college reside in hostel and the remaining reside outside. At the end of year, 50% of the hostellers got A grade while from outside students, only 30% got A grade in the examination. At the end of year, a student of the college was chosen at the random and was found to get A grade. What is the probability that the selected student was a hosteller?
25. A man rides his motorcycle at the speed of $50 \mathrm{~km} / \mathrm{h}$. He has to spend Rs. 2 km on petrol. If he rides it at a faster speed of $80 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs. 3 per km . He has atmost Rs. 120 to spend on petrol and one hours time. Using LPP find the maximum distance he can travel.
26. A jet of enemy is flying along the curve $y=x^{2}+2$ and a soldier is placed at the point $(3,2)$. Find the minimum distance between the soldier and the jet.

Answer Key

Section A

1. $\frac{1}{8}(5 \vec{a}+3 \vec{b}) 2.5$ sq. units $3 . \vec{r} .(2 \hat{i}+3 \hat{j}+4 \widehat{k})=29 \quad 4 .-14 \quad 5.4 \quad$ 6. $2 x \frac{d y}{d x}-y=0$

Section B

7. School $A=$ Rs. 850 , School $B=$ Rs. 805 , School C=Rs. 970 Values: Helping the orphans, use of recycled paper $8 .\left(\begin{array}{cc}-10 & 27 \\ -9 & -10\end{array}\right) \quad 8$ (or) $A^{-1}=\left[\begin{array}{ccc}-1 & 1 & -3 \\ -2 & 1 & -3 \\ 4 & -2 & 7\end{array}\right] \quad$ 10. $\frac{2}{\pi} \quad$ 11. $\frac{1}{2} \tan x \cdot e^{2 x}+c$
8. (or) $\frac{x^{2}}{2}+x+\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+c \quad$ 12. $\frac{1}{3}$
9. $\vec{r}=(\hat{\imath}-\hat{\jmath}+\hat{k})+\lambda(10 \hat{\imath}-4 \hat{\jmath}-7 \hat{k}) \quad 14$ (or) $\operatorname{FP}(5,4,4) ; 4 \sqrt{2}$
10. $-\frac{1}{12}$

CBSE SAMPLE QUESTION PAPER FOR 2015

www.maths $V_{\text {methods.in }}$
17. $\frac{d y}{d x}=-\frac{x^{x}(1+\log x)+y \cdot x^{y-1}+y^{x} \log y}{x \cdot y^{x-1}+x^{y} \log x}$
18. $a=11, b=-6$
19. $-3 \sqrt{5-2 x-x^{2}}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c$

Section C

20. $\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\} 20$ (or). $g(y)=\frac{(\sqrt{y-6})-3}{2} 21.6$ units $22 \cdot\left[\sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right] e^{-\frac{y}{x}}=$ $\log x^{2}+1 \quad 22$ (or) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2} \quad$ 23. $x-2 y+z=0 \quad$ 24. $\frac{10}{19} \quad$ 25. Max. $\mathrm{D}=$ $\frac{380}{7} k m$ at $\left(\frac{300}{7}, \frac{80}{7}\right) \quad$ 26. Minimum $D=\sqrt{5}$ at $(1,3)$
